翻訳と辞書
Words near each other
・ Nöggerath (crater)
・ Nöjd?
・ Nöjesguiden
・ Nöker (military)
・ Nökkvi Elíasson
・ Nöllenberger Bach
・ Nölling
・ Nömrög, Zavkhan
・ Nördliche Regnitz
・ Nördliches Höllhorn
・ Nördlingen
・ Nördlingen station
・ Nördlingen–Gunzenhausen railway
・ Nördlinger Hut
・ Nördlinger Ries
Nörlund–Rice integral
・ Nörr
・ Nörten-Hardenberg
・ Nörtershausen
・ Nörvenich
・ Nörvenich Air Base
・ Nösnerland
・ Nösnäsvallen
・ Nöteborg
・ Nöther (crater)
・ Nötsch Formation
・ Nötsch im Gailtal
・ Nötsch im Gailtal Airport
・ Növcü
・ NÖVOG


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nörlund–Rice integral : ウィキペディア英語版
Nörlund–Rice integral
In mathematics, the Nörlund–Rice integral, sometimes called Rice's method, relates the ''n''th forward difference of a function to a line integral on the complex plane. As such, it commonly appears in the theory of finite differences, and also has been applied in computer science and graph theory to estimate binary tree lengths. It is named in honour of Niels Erik Nørlund and Stephen O. Rice. Nørlund's contribution was to define the integral; Rice's contribution was to demonstrate its utility by applying saddle-point techniques to its evaluation.
==Definition==
The ''n''th forward difference of a function ''f''(''x'') is given by
:\Delta^n()(x)= \sum_^n (-1)^ f(x+k)
where is the binomial coefficient.
The Nörlund–Rice integral is given by
:\sum_^n (-1)^ f(k) =
\frac
\oint_\gamma \frac\, \mathrmz
where ''f'' is understood to be meromorphic, α is an integer, 0\leq \alpha \leq n, and the contour of integration is understood to circle the poles located at the integers α, ..., ''n'', but none of the poles of ''f''. The integral may also be written as
:\sum_^n (-1)^ f(k) =
-\frac
\oint_\gamma B(n+1, -z) f(z)\, \mathrmz
where ''B''(''a'',''b'') is the Euler beta function. If the function f(z) is polynomially bounded on the right hand side of the complex plane, then the contour may be extended to infinity on the right hand side, allowing the transform to be written as
:\sum_^n (-1)^ f(k) =
\frac
\int_^ \frac\, \mathrmz
where the constant ''c'' is to the left of α.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Nörlund–Rice integral」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.